Glyph Choices and Techniques for
Building Unicode Based Tamil Fonts

Muthu Nedumaran muthu@murasu.com
Kuala Lumpur, Malaysia

Abstract

Tamil font development has been around for a few decades. Developers have been creating
fonts for screen displays and print environments. Almost all of these efforts can be classified
into two categories:

The first one attempts to replace the 7bit ASCII characters with Tamil glyphs so that a user
will be able to compose Tamil text with a standard keyboard. As there is an obvious
limitation in the number of keys available on the keyboard, developers had ‘creatively’
dissected the glyphs so that a single key can be assigned to commonly used shapes. Examples
of these are the modifiers such as the pulli, ikara and iikaara hooks, the below baseline stroke
and suzi for pu, puu, yuu, yuu, vu, vuu. As the focus of the effort was to ‘somehow’ render
Tamil on the screen and on print, quality and appearance of the glyphs were compromised to
a great extent.

The second attempt placed the glyphs in the 8bit space, retaining the 7bit ASCII slots. This
required a piece of software to map the characters to keys and there were a number that were
freely available. While in the initial stages, there were so many different schemes of placing
glyphs, two were commonly adopted — TSCII and TAB. Neither of these is endorsed by any
standards organization but they provided the opportunity for the exchange of text in Tamil
even on legacy operating systems. As there was no code-page (or character set) support in the
operating system for these schemes, some slots had to be carefully avoided. This resulted in
limited space to place all Tamil glyphs. Although it was a lot better than the 7bit ASCII
attempt, there were still limitations. The same ikara and iikaara hooks were used over all base
letters. In TAB, the pulli was encoded separately and thus it appeared at the edge for longer
glyphs such as nna and nnna. To overcome this, monolingual schemes (such as TAM) were
introduced. They addressed the quality issue but again did not comply with any standard.
Also, the same font can’t be used to include even a single Roman alphabet in the Tamil text.
This is an absolute requirement in bilingual environments, specifically where Tamil is used as
a second language.

With more and more platforms providing system level support for Unicode and complex
script rendering, it is now possible to build very high quality fonts for Tamil, assigning unique
glyphs for each Tamil letter and tuning them for best appearance.

This paper will discuss the choices a font developer will have in building a Tamil font based
on the Unicode standard. Techniques such as grouping glyphs for typographic effects,
rendering the same text in ORNL and the new form, group wise kerning and some guidelines
for shaping will be discussed.

Tamil Internet 2002, California, USA 31



